
Software Engineering

 6 - 1

SOFTWARE TESTING

�Quality Assurance ● Testing Strategies

�Software Quality ❍ Unit Testing

�Software Reviews ❍ Integration Testing

�Software Quality Metrics ❍ Validation Testing

�Formal SQA Approaches ❍ System Testing

�Software Reliability ❍ Debugging

�SQA Plan

�Testing Techniques

�Black Box Testing

�White Box Testing

Software Engineering

 6 - 2

Software Development
Lifecycle

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Software Engineering

 6 - 3

Software Quality Assurance

Conformance to explicitly stated functional and performance
requirements, explicitly documented development
standards, and implicit characteristics that are expected of
all professionally developed software.

 -- a definition of Software Quality, Pressman, Page
550

Software Engineering

 6 - 4

Software Quality Factors

�Directly Measured

�Errors

�Lines of Code

�Execution Time of Unit

�Indirectly Measured

�Usability

�Maintenance

Software Engineering

 6 - 5

Software Quality Factors

Product
Transition

Product
Revision

Product Operations

McCall, J., P. Richards, and G. Walters, "Factors in Software Quality,"
three volumes, NTIS AD-A049-014, 015, 055, November 1977

Software Engineering

 6 - 6

Software Quality Checklists
Quality Factor Spec Design Impl Test Support

Functionality

Usability

Reliability

Performance

Supportability

Enter 0 (very poor) to 10 (outstanding) in each block to indentify quality

Grady, R.B., and D.L. Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall, 1987

Software Engineering

 6 - 7

Software Quality Assurance (SQA)

�SQA is a "planned and systematic pattern of
actions" to ensure quality in software.

�SQA is essential for any business which produces
software products used by others.

�The SQA group serves as an in-house
representative of the customers.

Software Engineering

 6 - 8

Software Reviews
Formal Technical Reviews (FTR)

�Uncover errors in function, logic, and implementation for any
representation of the software

�Verify that software meets specifications

�Ensure that software conforms to standards

�Ensure that software is developed in a uniform manner

�Ensure that the project is manageable

Class of Reviews

�Code Walkthroughs

�Code Inspections

�Round-Robin Reviews

�Others

Software Engineering

 6 - 9

Formal Technical Review
Constraints

�3-5 people in meeting -- developer, 2-3 reviewers, SQA
representative, and recorder

�< 2 hours preparation time per person (pre-review before the
meeting)

�< 2 hours for the meeting duration

During the Meeting

�Focus on a small, specific part of the software

�Review is initiated by SQA after the developer is done

�Developer talks through the product

�Recorder keeps notes on errors, issues, resolutions, and
action items

�All attendees sign off on the team's findings

Software Engineering

 6 - 10

Software Quality Metrics

�U.S. Air Force Systems Command Pamphlet 800-14:
Design Structure Quality Index

�IEEE Standard 982.1-1988: Software Maturity Index

�Halstead's Software Science

�McCabe's Complexity Metric

Software Engineering

 6 - 11

AFSCP 800-14 Design Structure
Quality Index (DSQI)

Three Steps:

1. Obtain specific information about the program (S1-S7)

2. Determine intermediate values (D1-D6)

3. Compute DSQI: DSQI wiDi 

wi is the relative weight of Di

DSQI is used by comparing it with previous DSQI's. If much lower
than expected, there is a need to do more design and review.

📄 Based on database and data flow items

Software Engineering

 6 - 12

IEEE Software Maturity Index (SMI)
MT = # modules in current release
Fc = # modules in current release
 that have changed
Fa = # modules in current release
 that have been added
Fd = # modules from preceding
 release that were deleted in current
 release
SMI MT Fa Fc Fd

MT
   ()

As SMI approaches 1.0, the product is stabilizing.

� Based on changes because of software updates

Software Engineering

 6 - 13

Halstead Software Science

n1 = # distinct operators in program
n2 = # distinct operands in program
N1 = # operator occurrences
N2 = # operand occurrences

Given:

N n n n n
V N n n
L

n
n
N

 
 



1 2 1 2 2 2
2 1 2

2
1

2
2

log log
log ()
*

Program Length statements
Volume bits to represent algorithm

Volume Ratio min volume relative to
actual volume possible

Software Engineering

 6 - 14

Example of Halstead’s Metrics
SUBROUTINE SORT (X, N)
DIMENSION X(N)
IF (N .LT. 2) RETURN
DO 20 I=2,N
 DO 10 J=1,I
 IF (X(I) .GE. X(J)) GOTO 10
 SAVE = X(I)
 X(I) = X(J)
 X(J) = SAVE

 10 CONTINUE
 20 CONTINUE

RETURN
END

Program

Software Engineering

 6 - 15

Example of
Halstead’s

Metrics,
Continued

Operator Count

1End of statement 7

2Array subscript 6

3= 5

4IF () 2

5DO 2

6, 2

7End of program 1

8.LT. 1

9.GE. 1

10 GOTO 10 1

n1 = 10 N1 = 28

Operators

Software Engineering

 6 - 16

Example of
Halstead’s

Metrics,
Continued

Operand Count

1X 6

2I 5

3J 4

4N 2

52 2

6SAVE 2

71 1

n2 = 7 N2 = 22

Operands

Software Engineering

 6 - 17

Example of Halstead’s Metrics,
Continued

N
V
L

  
  

 FHIKFHIK 

10 210 7 27 52871
210 7 40875

2
10

7
22

14
220

006364

log log .
log () .

.

Software Engineering

 6 - 18

McCabe’s Complexity Metric

�Create program graph, G

�Determine cyclomatic complexity, V(G)

�Useful for estimating testing difficulty

V(G) > 10 indicates tough testing

Software Engineering

 6 - 19

Program Graph and V(G)

a

b c d

e

f

R1
R2

R3

R4

R5

V(G) = # regions in planar graph
 = 5

Software Engineering

 6 - 20

Formal Approaches to SQA

1. Proof of Correctness

2. Statistical Quality
Assurance

3. Cleanroom Process

Software Engineering

 6 - 21

Proof of Correctness
Formal model

of Requirements

Formal Model

of Implemented

Program

Proof of
Conformance

Agreement!

Software Engineering

 6 - 22

Proof of Correctness
Stmt Code

1 procedure RANDOM (SEED : in FLOAT) return FLOAT is
2 begin
3 assert (SEED > 0 and SEED < MAX.FLOAT)
... ...
n-2 assert (RESULT > 0.0 and RESULT < 1.0)
n-1 return RESULT;
n end RANDOM;

Software Engineering

 6 - 23

Statistical Quality Assurance

1. Software defect information is
collected.

2. Trace each defect to its cause.

3. Identify the 20% "vital few" defects.

4. Correct the "vital few" defects.

Software Engineering

 6 - 24

Data Collection for Statistical SQA
Example:

Total Serious Moderate Minor

Error No. % No. % No. % No. %
IES 205 22 34 27 68 18 103 24
MCC 156 17 12 9 68 18 76 17
IDS 48 5 1 1 24 6 23 5
VPS 25 3 0 0 15 4 10 2
EDR 130 14 26 20 68 18 36 8
IMI 58 6 9 7 18 5 31 7
EDL 45 5 14 11 12 3 19 4
IET 95 10 12 9 35 9 48 11
other 180 19 20 16 71 18 89 20
Totals 942 128 379 435

Software Engineering

 6 - 25

Defect Index
Di = # defects uncovered in
 ith step of software engineering
 process
Si = # serious defects
Mi = # moderate defects
Ti = # minor defects
PS = size of product (LOC,
 pages of doc, etc.)
Wj = weighting factor (j=1 for serious
 defect, 2 for moderate defect, 3 for
 minor defect)
PIi W Si

Di
W Mi

Di
W Ti

Di
DI i PIi

PS
PI PI PI

PS

 FHIK FHIK FHIK
    

1 2 3
1 2 2 3 3(*) ...

Software Engineering

 6 - 26

Cleanroom Software Engineering
�Software developed under statistical quality control

�Goal is defect prevention rather than defect removal

�Proof of correctness is used to prevent defects

�Statistical QA used to certify the quality of the software

�Cleanroom approach has been shown to remove 90% of all defects
prior to first tests

�General use of method would require substantial changes in
management and technical approaches in industry

Software Engineering

 6 - 27

Software Testing

1. Introduction

2. White Box Testing

3. Black Box Testing

4. Test Strategies

Software Engineering

 6 - 28

Software Fundamentals

Testing objectives

1. We test to find errors

2. A good test case has a high probability of finding an
as yet undiscovered error

3. A successful test uncovers an as yet undiscovered
error

Testing cannot show the absence of defects, it can only show
that software defects are present.

Software Engineering

 6 - 29

Test Flow

Testing

Evaluation

Reliability
model

Debug

Software
Configuration

Test
Configuration

Expected
Results

Error rate
data

Predicted
Reliability

Test
Results

Errors

Corrections

Software Engineering

 6 - 30

White and Black Box Testing

Uses the control structure of the procedural design to
derive test cases

1. Basis Path Testing

2. Control Structure Testing

White Box Testing

Black Box Testing

Uses functional requirements including input/output
relations to derive tests.

1. Equivalence Partitioning

2. Boundary Value Analysis

3. Cause-Effect Graphing Techniques

4. Comparison Testing

Software Engineering

 6 - 31

White Box Testing

1. White box tests exercise all

- independent paths with a module at least once

- logical decisions on their true and false sides

- loops at their boundaries and within their operational
bounds

- internal data structures to ensure their validity

2. Why test as white box rather than black box (which is easier)?

- Logic errors and incorrect assumptions are inversely
proportional to the probability that a program path will be
executed.

- We often believe that a logical path is not likely to be
executed when, in fact, it may be executed on a regular basis.

- Typographical errors are random.

Software Engineering

 6 - 32

Basis Path Testing
Test derived from a basis set of execution paths.

Cyclomatic number V(G) of the program graph is the upper bound of
the size of the basis set.

The size of the basis set is the number of tests that must be designed
and executed to guarantee coverage of all program statements.

Procedure:

1. Using the design or code as a foundation, draw a
corresponding flow graph.

2. Determine the cyclomatic complexity of the resultant flow
graph.

3. Determine a basis set of linearly independent paths

4. Prepare test cases that will force execution of each path in
the basis set.

Software Engineering

 6 - 33

Creating Program Graphs

If While Until Case

Software Engineering

 6 - 34

Example Program Graph
1

2,3

4

8,9
65

7

10

11

while x>0

y:=1

if x>10 then

 if z then
x:=-2

 else
x:=-3

 end if

else y:=4

 x:=-1

end if

end loop

return

1

2

3

4,5

6

7

8

9

10

11

Software Engineering

 6 - 35

Deriving Independent Paths
1

2,3

4

8,9
65

7

10

11

Independent Paths

 (basis set)

1. 1,11

2. 1,2,3,8,9,10,1,11

3. 1,2,3,4,6,7,10,1,11

4. 1,2,3,4,5,7,10,1,11

R4

R1

R2R3

V(G) = E-N+2
V(G) = 4

Software Engineering

 6 - 36

Deriving Test Cases

while x>0

y:=1

if x >10 then

 if z then
x:=-2

 else
x:=-3

 end if

else y:=4

 x:=-1

end if

end loop

return

1

2

3

4,5

6

7

8

9

10

11

Path 1,11

input: x < 1

output: unchanged x,y

Path 1,2,3,8,9,10,1,11

input: x > 0 and x < 10

output: y:=4, x:=-1

Path 1,2,3,4,6,7,10,1,11

input: x > 10 and z = false

output: y:=1, x:=-3

Path 1,2,3,4,5,7,10,1,11

input: x > 10 and z = true

output: y:=1, x:=-2

Tests:Routine:

Software Engineering

 6 - 37

Control Structure Testing
The basis path testing technique previously described is one
of a number of techniques for Control Structure Testing.

Basis path testing is simple and effective, but it is not sufficient
in and of itself. Other variations on Control Structure Testing
include:

�Loop Testing
�Condition Testing
�Data Flow Testing

Software Engineering

 6 - 38

Condition Testing
Condition Testing exercises the logical conditions contained in a
program module.

A simple condition is a boolean variable or a relational expression,
possibly preceded with one NOT operator.

A relational expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator>
is one of the following:

< <= = /= (inequality) > >=

A compound condition is composed of two or more simple conditions,
boolean operators, and parentheses. It is assumed that boolean operators
are used in a compound condition.

A boolean expression is a condition without relational expressions.

Software Engineering

 6 - 39

Data Flow Testing
Data Flow Testing involves the selection of test paths of a program
according to the locations of definitions and uses of variables in the
program.

With X representing a variable and S representing the number of a
statement, we define:

DEF(S) = {X | statement S contains a definition of X}
USE(S) = {X | statement S contains a use of X}

A definition-use chain (or DU chain) of variable X is of the form
[X, S, S’], where S and S’ are statement numbers, X is in DEF(S)
and USE(S’), and the definition of X in statement S is live at
statement S’.

The DU testing strategy requires that every DU chain be covered at
least once.

Software Engineering

 6 - 40

Loop Testing
Loop testing is a white box testing technique that focuses exclusively
on the validity of loop constructs. Four different classes of loops can
be defined:

� Nested loops
� Concatenated loops
� Simple loops
� Unstructured loops

Software Engineering

 6 - 41

Black Box Testing
Black box testing methods focus on the functional requirements of the
software. A set of input conditions is derived which fully exercises all
functional requirements for a program or code fragment in black box
testing.

Black box testing attempts to find errors in the following categories:

�incorrect or missing functions
�interface errors
�errors in data structures or external database access
�performance errors
�initialization and termination errors

Software Engineering

 6 - 42

Black Box Testing Methods
● Equivalence Partitioning - divides the input domain of a program
into classes of data from which test cases can be derived

● Boundary Value Analysis - selects test cases that exercise
bounding values

● Cause-Effect Graphing Techniques - provide concise representations
of logical conditions and corresponding actions

● Comparison Testing - develop software redundantly, using separate
software development teams for the same module, and compare the
results generated by the independent modules

Software Engineering

 6 - 43

Kinds of Automated Testing Tools
● Static analyzers
● Code auditors
● Assertion processors
● Test file generators
● Test data generators
● Test verifiers
● Test harnesses
● Output comparators
● Symbolic execution systems
● Environment simulators
● Data flow analyzers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

