SOFTWARE TESTING

Quality Assurance

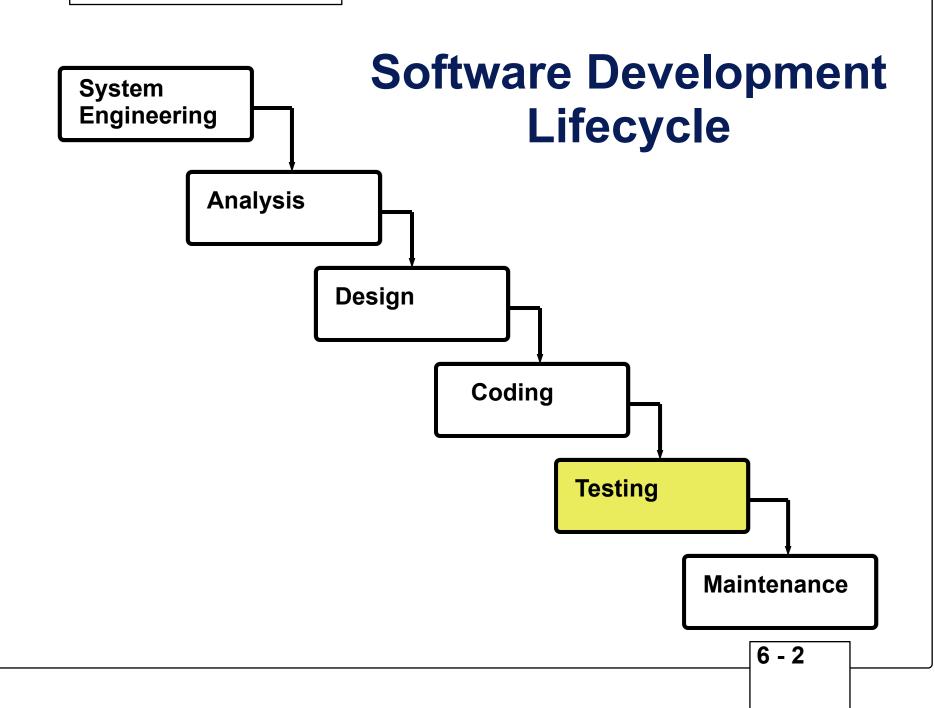
Software Quality

Software Reviews

Software Quality Metrics

Formal SQA Approaches

Software Reliability


SQA Plan

Testing Techniques

Black Box Testing

White Box Testing

- Testing Strategies
 - O Unit Testing
 - O Integration Testing
 - O Validation Testing
 - O System Testing
 - O Debugging

550

Software Quality Assurance

Conformance to explicitly stated functional and performance requirements, explicitly documented development standards, and implicit characteristics that are expected of all professionally developed software.

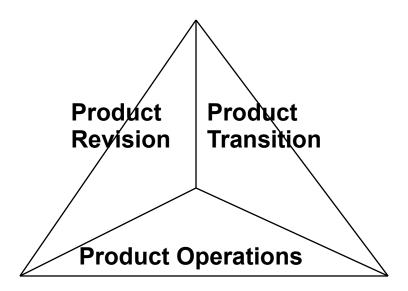
-- a definition of Software Quality, Pressman, Page

Software Quality Factors

Directly Measured

Errors

Lines of Code


Execution Time of Unit

Indirectly Measured

Usability

Maintenance

Software Quality Factors

McCall, J., P. Richards, and G. Walters, "Factors in Software Quality," three volumes, NTIS AD-A049-014, 015, 055, November 1977

Software Quality Checklists

Quality Factor	Spec	Design	Impl	Test	Support
Functionality					
Usability					
Reliability					
Performance					
Supportability					

Enter 0 (very poor) to 10 (outstanding) in each block to indentify quality

Grady, R.B., and D.L. Caswell, *Software Metrics: Establishing a Company-Wide Program*, Prentice-Hall, 1987

Software Quality Assurance (SQA)

SQA is a "planned and systematic pattern of actions" to ensure quality in software.

- SQA is essential for any business which produces software products used by others.
- The SQA group serves as an in-house representative of the customers.

Software Reviews

Formal Technical Reviews (FTR)

Uncover errors in function, logic, and implementation for any representation of the software

Verify that software meets specifications

Ensure that software conforms to standards

Ensure that software is developed in a uniform manner

Ensure that the project is manageable

Class of Reviews

Code Walkthroughs

Code Inspections

Round-Robin Reviews

•••• Others

Formal Technical Review

Constraints

3-5 people in meeting -- developer, 2-3 reviewers, SQA representative, and recorder

- 2 hours preparation time per person (pre-review before the meeting)
- < 2 hours for the meeting duration</p>

During the Meeting

Focus on a small, specific part of the software

Review is initiated by SQA after the developer is done

Developer talks through the product

Recorder keeps notes on errors, issues, resolutions, and action items

All attendees sign off on the team's findings

Software Quality Metrics

U.S. Air Force Systems Command Pamphlet 800-14: Design Structure Quality Index

IEEE Standard 982.1-1988: Software Maturity Index

Halstead's Software Science

McCabe's Complexity Metric

AFSCP 800-14 Design Structure Quality Index (DSQI)

Three Steps:

- 1. Obtain specific information about the program (S1-S7)
- 2. Determine intermediate values (D1-D6)
- 3. Compute DSQI:

 $DSQI \square \square w_i D_i$

wi is the relative weight of Di

DSQI is used by comparing it with previous DSQI's. If much lower than expected, there is a need to do more design and review.

Based on database and data flow items

IEEE Software Maturity Index (SMI)

 $M_{T} = \# \text{ modules in current rel}$ $F_{C} = \# \text{ modules in current rele}$ that have changed $F_{a} = \# \text{ modules in current rele}$ that have been added $F_{d} = \# \text{ modules from precedir}$ release that were deleted in release $SMI \square \frac{MT}{I} (F_{a} \square F_{c} \square F_{d})}{MT}$

As SMI approaches 1.0, the product is stabilizing.

Based on changes because of software updates

Halstead Software Science

Given:

 $m_1 = #$ distinct operators in pro $m_2 = #$ distinct operands in pro- $M_1 = #$ operator occurrences $M_2 = #$ operand occurrences

Program Length Volume

Volume Ratio

 $\begin{array}{ll} N & n & log_{2}n & log_{2}n \\ V & N & log_{2}(n & n \\ N & n & n \\ \end{array} \\ L & \frac{2}{m} & \frac{m^{2}}{N^{2}} \\ \end{array} \\ \begin{array}{l} \text{min volume relative to} \\ \text{actual volume possible} \end{array} \\ \end{array}$

Example of Halstead's Metrics

SUBROUTINE SORT (X, N)

DIMENSION X(N)

IF (N .LT. 2) RETURN

DO 20 I=2,N

10

20

END

Program

DO 10 J=1,I IF (X(I) . GE. X(J)) GOTO 10 SAVE = X(I)X(I) = X(J)X(J) = SAVECONTINUE CONTINUE RETURN

Software Engineering

Example of Halstead's Metrics, Continued

Operators

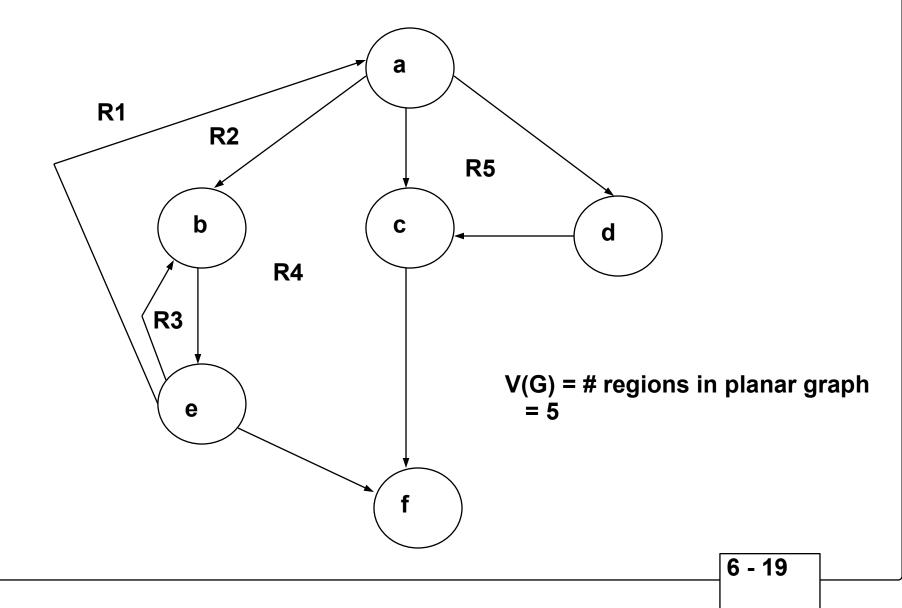
Operator	Count				
1End of statement	7				
2Array subscript	6				
3=	5				
4IF ()	2				
5 DO	2				
6,	2				
7End of program	1				
8. LT.	1				
9. GE .	1				
10	GOTO 10 1				

n1 = 10 N1 = 28

6 - 15

Software Engineering

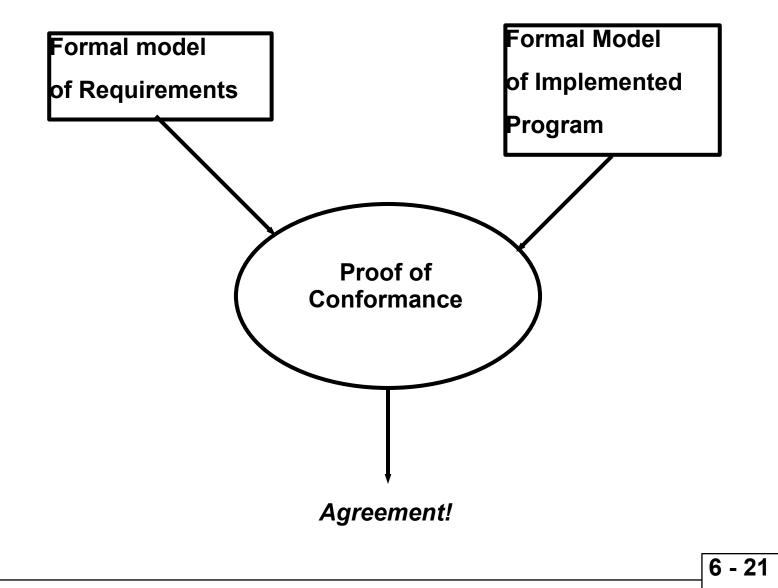
Example of	One	anda
Halstead's	Oper	rands
Metrics,	Operand	Count
Continued	1 X	6
	21	5
	3 J	4
	4 N	2
	5 2	2
	6 SAVE	2
	7 1	1
	n2 = 7	N2 = 22


Example of Halstead's Metrics, Continued

 $N = 1000210 \ 7000270 \ 5287$ $V = 10002(10) \ 7) = 4.0875$ $L = \frac{14}{10002} \ 0.06364$

McCabe's Complexity Metric

Create program graph, G Determine cyclomatic complexity, V(G) Useful for estimating testing difficulty V(G) > 10 indicates tough testing


Program Graph and V(G)

Formal Approaches to SQA

- 1. **Proof of Correctness**
- 2. Statistical Quality Assurance
- 3. Cleanroom Process

Proof of Correctness

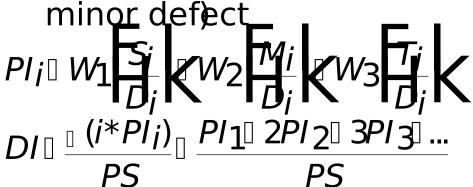
Stmt	Code
1	procedure RANDOM (SEED : in FLOAT) return FLOAT is
2	begin
3	assert (SEED > 0 and SEED < MAX.FLOAT)
•••	•••
n-2	assert (RESULT > 0.0 and RESULT < 1.0)
n-1	return RESULT;
n	end RANDOM;

Statistical Quality Assurance

- 1. Software defect information is collected.
- 2. Trace each defect to its cause.
- 3. Identify the 20% "vital few" defects.
- 4. Correct the "vital few" defects.

Data Collection for Statistical SQA

Example:


		Total		Seri	ous Mode	erate	Minc	or
Error	No.	%	No.	%	No.	%	No.	%
IES	205	22	34	27	68	18	103	24
MCC	156	17	12	9	68	18	76	17
IDS	48	5	1	1	24	6	23	5
VPS	25	3	0	0	15	4	10	2
EDR	130	14	26	20	68	18	36	8
IMI	58	6	9	7	18	5	31	7
EDL	45	5	14	11	12	3	19	4
IET	95	10	12	9	35	9	48	11
other	180	19	20	16	71	18	89	20
Totals	s 942		128		379		435	
							r	

Defect Index

- D_j = # defects uncovered in ith step of software engineer process
- $S_i = #$ serious defects
- $M_i = # moderate defects$
- $T_i = # minor defects$
- PS = size of productOC,

pages of detd

W_j = weighting factp≠1 for serio defec⊉ for moderate defetotr

Cleanroom Software Engineering

Software developed under statistical quality control

Goal is defect prevention rather than defect removal

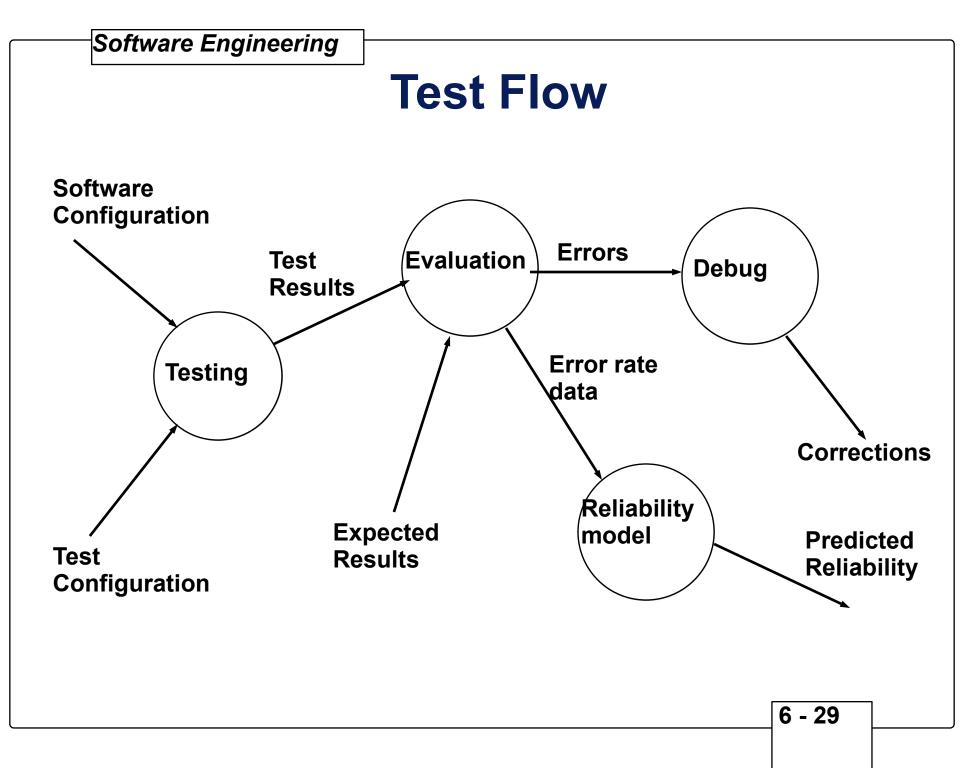
Proof of correctness is used to prevent defects

Statistical QA used to certify the quality of the software

Cleanroom approach has been shown to remove 90% of all defects prior to first tests

General use of method would require substantial changes in management and technical approaches in industry

Software Testing


- 1. Introduction
- 2. White Box Testing
- 3. Black Box Testing
- 4. Test Strategies

Software Fundamentals

Testing objectives

- **1. We test to find errors**
- 2. A good test case has a high probability of finding an as yet undiscovered error
- 3. A successful test uncovers an as yet undiscovered error

Testing cannot show the absence of defects, it can only show that software defects are present.

White and Black Box Testing

White Box Testing

Uses the control structure of the procedural design to derive test cases

- 1. Basis Path Testing
- 2. Control Structure Testing

Black Box Testing

Uses functional requirements including input/output relations to derive tests.

- **1. Equivalence Partitioning**
- 2. Boundary Value Analysis
- 3. Cause-Effect Graphing Techniques
- 4. Comparison Testing

White Box Testing

1. White box tests exercise all

- independent paths with a module at least once

- logical decisions on their true and false sides

- loops at their boundaries and within their operational bounds

- internal data structures to ensure their validity

2. Why test as white box rather than black box (which is easier)?

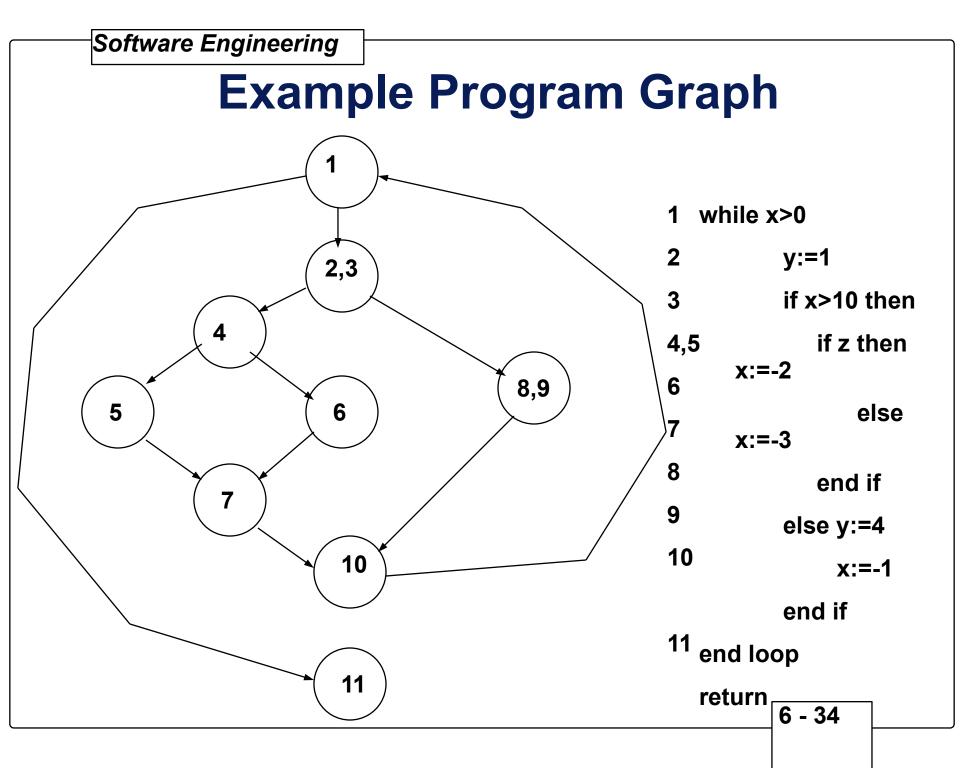
- Logic errors and incorrect assumptions are inversely proportional to the probability that a program path will be executed.

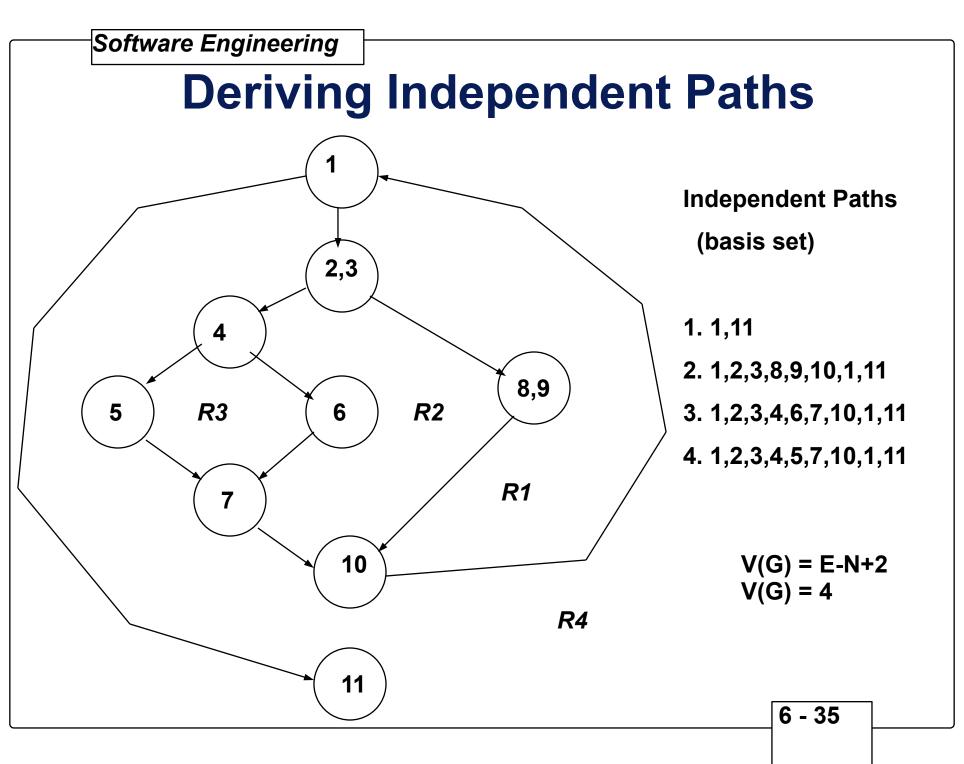
- We often believe that a logical path is not likely to be executed when, in fact, it may be executed on a regular basis.

- Typographical errors are random.

Basis Path Testing

Test derived from a basis set of execution paths.


Cyclomatic number V(G) of the program graph is the upper bound of the size of the basis set.


The size of the basis set is the number of tests that must be designed and executed to guarantee coverage of all program statements.

Procedure:

- 1. Using the design or code as a foundation, draw a corresponding flow graph.
- 2. Determine the cyclomatic complexity of the resultant flow graph.
- 3. Determine a basis set of linearly independent paths
- 4. Prepare test cases that will force execution of each path in the basis set.

Software Engineering

Deriving Test Cases

Routine	9:	Tests:			
1 while x>0		<u>Path 1,11</u>			
2	y:=1	input: x < 1			
3	if x >10 then	output: unchanged x,y			
4,5	if z then	Path 1,2,3,8,9,10,1,11			
6	x:=-2	input: x > 0 and x < 10			
7	else x:=-3	output: y:=4, x:=-1			
8	end if	Path 1,2,3,4,6,7,10,1,11			
9	else y:=4	input: x > 10 and z = false			
10	x:=-1	output: y:=1, x:=-3			
	end if	Path 1,2,3,4,5,7,10,1,11			
¹¹ e	nd loop	input: x > 10 and z = true			
return		output: y:=1, x:=-2			
		6 - 36			

Control Structure Testing

The basis path testing technique previously described is one of a number of techniques for Control Structure Testing.

Basis path testing is simple and effective, but it is not sufficient in and of itself. Other variations on Control Structure Testing include:

Loop Testing

Condition Testing

Data Flow Testing

Condition Testing

Condition Testing exercises the logical conditions contained in a program module.

A *simple condition* is a boolean variable or a relational expression, possibly preceded with one NOT operator.

A relational expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator> is one of the following:

< <= = /= (inequality) > >=

A *compound condition* is composed of two or more simple conditions, boolean operators, and parentheses. It is assumed that boolean operators are used in a compound condition.

A boolean expression is a condition without relational expressions.

Data Flow Testing

Data Flow Testing involves the selection of test paths of a program according to the locations of definitions and uses of variables in the program.

With X representing a variable and S representing the number of a statement, we define:

DEF(S) = {X | statement S contains a definition of X}
USE(S) = {X | statement S contains a use of X}

A *definition-use chain* (or DU chain) of variable X is of the form [X, S, S'], where S and S' are statement numbers, X is in DEF(S) and USE(S'), and the definition of X in statement S is live at statement S'.

The *DU testing strategy* requires that every DU chain be covered at least once.

Software Engineering

Loop Testing

Loop testing is a white box testing technique that focuses exclusively on the validity of loop constructs. Four different classes of loops can be defined:

Nested loops Concatenated loops Simple loops

Unstructured loops

Black Box Testing

Black box testing methods focus on the functional requirements of the software. A set of input conditions is derived which fully exercises all functional requirements for a program or code fragment in black box testing.

Black box testing attempts to find errors in the following categories:

incorrect or missing functions interface errors errors in data structures or external database access performance errors initialization and termination errors

Black Box Testing Methods

• Equivalence Partitioning - divides the input domain of a program into classes of data from which test cases can be derived

 Boundary Value Analysis - selects test cases that exercise bounding values

• Cause-Effect Graphing Techniques - provide concise representations of logical conditions and corresponding actions

Comparison Testing - develop software redundantly, using separate software development teams for the same module, and compare the results generated by the independent modules

Kinds of Automated Testing Tools

- Static analyzers
- Code auditors
- Assertion processors
- Test file generators
- Test data generators
- Test verifiers
- Test harnesses
- Output comparators
- Symbolic execution systems
- Environment simulators
- Data flow analyzers